BEYOND THE BRAIN BLOG
  • Blog
  • Author
  • Resources
    • Bookstore
    • Downloads
    • Provider Tools
    • Patient Resources
    • Speakers & Talks
    • Ketogenic Diet
  • For Patients
  • Contact

ABSTRACT: Atypical Antipsychotics Rapidly and Inappropriately Switch Peripheral Fuel Utilization to Lipids

6/20/2014

0 Comments

 
SOURCE: Schizophrenia Bulletin
May 21, 2010 | Albaugh & et al.

Picture
Patients taking atypical antipsychotics are frequented by serious metabolic (eg, hyperglycemia, obesity, and diabetes) and cardiac effects. Surprisingly, chronic treatment also appears to lower free fatty acids (FFAs). 

This finding is paradoxical because insulin resistance is typically associated with elevated not lower FFAs. How atypical antipsychotics bring about these converse changes in plasma glucose and FFAs is unknown. Chronic treatment with olanzapine, a prototypical, side effect prone atypical antipsychotic, lowered FFA in Sprague–Dawley rats. Olanzapine also lowered plasma FFA acutely, concomitantly impairing in vivo lipolysis and robustly elevating whole-body lipid oxidation. Increased lipid oxidation was evident from accelerated losses of triglycerides after food deprivation or lipid challenge, elevated FFA uptake into most peripheral tissues (∼2-fold) except heart, rises in long-chain 3-hydroxylated acyl-carnitines observed in diabetes, and rapid suppression of the respiratory exchange ratio (RER) during the dark cycle. Normal rises in RER following refeeding, a sign of metabolic flexibility, were severely blunted by olanzapine. Increased lipid oxidation in muscle could be explained by ∼50% lower concentrations of the negative cytoplasmic regulator of carnitine palmitoyltransferase I, malonyl-CoA. This was associated with loss of anapleurotic metabolites and citric acid cycle precursors of malonyl-CoA synthesis rather than adenosine monophosphate-activated kinase activation or direct ACC1/2 inhibition. 

The ability of antipsychotics to lower dark cycle RER in mice corresponded to their propensities to cause metabolic side effects. Our studies indicate that lipocentric mechanisms or altered intermediary metabolism could underlie the FFA lowering and hyperglycemia (Randle cycle) as well as some of the other side effects of atypical antipsychotics, thereby suggesting strategies for alleviating them.


Summary
Collectively, the present study presents novel data related to the mechanism of a metabolic side effect of olanzapine observed in humans, i.e. FFA lowering. It has also shown that acute olanzapine induces metabolic inflexibility by causing a rapid shift in the major fuel being oxidized within peripheral tissues from mostly carbohydrate to mostly fat while insidiously preventing the mobilization of that fuel. After food deprivation, and perhaps by extension between meals, these actions of olanzapine more rapidly deplete lipid fuel than would otherwise occur. The shift in fuel utilization appears to precede the development of insulin resistance and, therefore, has the potential to explain its development and conceivably may also be involved in some of the other known side effects of these drugs.
0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture


    USEFUL LINKS

    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture
    Picture

    Archives

    December 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    August 2017
    January 2017
    November 2016
    September 2016
    August 2016
    July 2016
    May 2016
    March 2016
    February 2016
    December 2015
    November 2015
    October 2015
    September 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013


    following

    Picture
Creative Commons License
Copyright 2013
Beyond the Brain Blog
Beyond the Brain is a not-for-profit website. We appreciate your support to continue providing more content and tools.    Donate today!
BLOG  |  AUTHOR |  RESOURCES |  FOR PATIENTS |  CONTACT  |  SUPPORT BTB